Taking Screenshots
Most pieces of malware and penetration testing frameworks include the capability to take screenshots
against the remote target. This can help capture images, video frames, or other sensitive data that you
might not see with a packet capture or keylogger. Thankfully, we can use the PyWin32 package (see
Installing the Prerequisites) to make native calls to the Windows API to grab them.
A screenshot grabber will use the Windows Graphics Device Interface (GDI) to determine necessary
properties such as the total screen size, and to grab the image. Some screenshot software will only
grab a picture of the currently active window or application, but in our case we want the entire
screen. Let’s get started. Crack open screenshotter.py and drop in the following code:

 import win32gui
 import win32ui
 import win32con
 import win32api
 # grab a handle to the main desktop window
➊ hdesktop = win32gui.GetDesktopWindow()
 # determine the size of all monitors in pixels
➋ width = win32api.GetSystemMetrics(win32con.SM_CXVIRTUALSCREEN)
 height = win32api.GetSystemMetrics(win32con.SM_CYVIRTUALSCREEN)
 left = win32api.GetSystemMetrics(win32con.SM_XVIRTUALSCREEN)
 top = win32api.GetSystemMetrics(win32con.SM_YVIRTUALSCREEN)
 # create a device context
➌ desktop_dc = win32gui.GetWindowDC(hdesktop)
 img_dc = win32ui.CreateDCFromHandle(desktop_dc)
 # create a memory based device context
➍ mem_dc = img_dc.CreateCompatibleDC()
 # create a bitmap object
➎ screenshot = win32ui.CreateBitmap()
 screenshot.CreateCompatibleBitmap(img_dc, width, height)
 mem_dc.SelectObject(screenshot)
 # copy the screen into our memory device context
➏ mem_dc.BitBlt((0, 0), (width, height), img_dc, (left, top), win32con.SRCCOPY)
➐ # save the bitmap to a file
 screenshot.SaveBitmapFile(mem_dc, 'c:\\WINDOWS\\Temp\\screenshot.bmp')
 # free our objects
 mem_dc.DeleteDC()
 win32gui.DeleteObject(screenshot.GetHandle())
Let’s review what this little script does. First we acquire a handle to the entire desktop ➊, which
includes the entire viewable area across multiple monitors. We then determine the size of the
screen(s) ➋ so that we know the dimensions required for the screenshot. We create a device
context[18] using the GetWindowDC ➌ function call and pass in a handle to our desktop. Next we need
to create a memory-based device context ➍ where we will store our image capture until we store the
bitmap bytes to a file. We then create a bitmap object ➎ that is set to the device context of our
desktop. The SelectObject call then sets the memory-based device context to point at the bitmap
object that we’re capturing. We use the BitBlt ➏ function to take a bit-for-bit copy of the desktop
image and store it in the memory-based context. Think of this as a memcpy call for GDI objects. The
final step is to dump this image to disk ➐. This script is easy to test: Just run it from the command
line and check the C:\WINDOWS\Temp directory for your screenshot.bmp file. Let’s move on to
