[bookmark: _GoBack]Regular Expressions
The construct called ‘regular expression’ is a method to isolate, add, remove, fold or replace certain patterns of text within other text. The term ‘regex’ is often used instead. 
The simplest example is a Find command that exists in every text editor, for example: Find ‘abc’ in text  - In this case we crafted a string ‘abc’ to for inside the text that’s in the variable (or file) text.
Regular expressions are used as constructs by many languages like Java, Python, Perl, Ruby, Unix/Linux shell and many more. There are nuances and different ‘flavors’, but there are many common aspects.
A slightly more advanced example: We need to find all the words in a file of English words, that start with the letter ‘q’ followed by letter other than ‘u’. The file name is: wordlist.txt and we’ll use ‘egrep’ utility/command:
  egrep ‘q[^u]’ wordlist.txt  (In a few pages the explanation for this will come).
Regex  is sort of a language, with rules and characters that mean different things when found in different contexts (called metacharacters)
Metacharacters
Those are characters with special meaning when appear in a regex. To mark the beginning of a line, we use: ^  (caret), and the end of the line: $ (Dollar sign). So if my assignment is to find lines that contain only: ‘cat’ (with no spaces and no other characters on the line, my expression would be: ‘^cat$’ 
Dot (or period) means ‘any’ character (very powerful tool)
The vertical bar is used for alternation (or), for example: ‘cat|dog’ will match eiter ‘cat’ or ‘dog’.
Parenthesis are used for grouping and limiting scope of alternation, for example: ‘(T|t)he’ will match ‘The’ or ‘the’
* (star), means repeating the character (or unit, or sub-expression) before it, 0 or more times.

+ (plus) means similarly but repeating at least once or more. ? (question mark means the previous sub-expression is optional. Collectively the star, plus and question mark are called ‘quantifiers’. We could also use interval quantifiers with minimum and maximum like this: {min,max}  or example:  
‘[a-zA-Z@#$]+([a-zA-Z0-9$#@_]){0,30}’   match any legal identifier in PL/1. (the first character s alphabetic including the 3 extra-lingual, then any alphabetic, digit or underscore, up to 31 altogether.

Character class, are characters surrounded by square brackets, for instance: [abc]   - what that means is that only one character of the class is used for a match (in this case either ‘a’, ‘b’ or ‘c’).  Using this, for instance, to find the word ‘The’ or ‘the’, would be likethis:  [Tt]he
In other words, the content of a character class is a list of characters, one of which can match at that point, so the implication is ‘or’
Inside a character class, some metacharaters lose their special meaning. For example the metacharater * (star), and the + (plus) inside a character class they both simply mean themselves. The same is true for the ‘or’ |  (vertical bar)
For example:    ab*   can match: a, ab, abb, abbb, abbbb and so on. On the other hand, [ab*]   can match only: a, b or *  
A character class has a metacharater dash (-), only if it appears between characters, for example: [0-9a-z]  mean all decimal digits and all lowercase English letters. If, however we write: [-abd],  that means either -, a, b or d 
Negation – Another important aspect of character class is matching everything ‘not’ in the class. For that we use the caret sign, as first in the class:  [^abc] matches any character that is NOT a, b or c. Now we can understand why: ‘q[^u]’  matched every word starting with q, with a second letter different than u.
Some flavors of regex use \<  and \> to mark the start and end of a WORD (similar to ^ and $ for line boundaries). egrep uses the switch –i to ignore letter case. 
Back-reference – Another use of parenthesis is to refer back to text that matched an earlier sub-expression. In order to use it we deploy the sequence: \1  which means the group that matched. We can do that with more groups like \2 \3 etc. For example:  ‘([a-z])([0-9])\1\2’   The \1 refers to the text matched by [a-z] and \2 refers to the text matched by [0-9] 
Escape – In order to refer to metacharacters as regular ones, we can escape them by preceding them with a backslash. There for:  ‘\.tr.*’ will match text like .trash (the first dot is escaped so it means a ‘dot’ and the second means any character. Escape does not work in a character class. Another example, matching a word within parenthesis can be done by: ‘\([a-zA-Z]+\)’
When crafting a regex it’s important to know the data we’ll be working with, so we can find the balance between creating a perfect regex that always works, but will be very complex, vs. creating a quick regex that will give us good enough results. For example if we want to identify lines containing URL’s in a 50,000 line text, we can suggest using: 
egreg –i ‘\<http:/[-a-z0-9_.:]+/[-a-z0-9_:@&?=+,.!/~*’%$]*\.tml?\>’   , however, this regex will match: ‘http://…./nada.html’  - which is certainly not a URL, but we can then filter it out ourselves.
Real life problem: Craft a regex to match any HTML tag. If you try: ‘<.*>’ and your text is: ‘<I>short</I>  it will match the entire thing and not the ‘<I>’ A better choice will be: ‘<[a-zA-Z]+>’
Parenthesis
They are used for either grouping characters (to apply a quantifier on, or alteration with |), or for capturing the matching value. For example: /^\.([0-9]+)/ will capture the digits on the right of the decimal point, for strings that start with the decimal point, i.e :  .345    $1 will be 345.
The captured values (we can have multiple sets of parenthesis) are placed in special variables (Perl) named: $1, $2,…. (according to their placement in the expression from left to right).
None capturing parenthesis
If we want to group items , but not create a ‘captured item’ (referred to with $1, $2 etc.), we can specify: (?:)
Example:
if (/(bronto)?saurus (steak|burger)/){
    Print “We’ll eat $1 \n”;  
}                                                          # will not work, because $1 will be the 
                                                           # (bronto) part
We’ll need:  if (/(?:bronto)?saurus (steak|burger)/)
Match variables ($1, $2 etc.) persist until the next successful match.
$&  - The whole part that matched
$`    - The whole part before the match in the string
$’    - The whole part after the match in the string
(those three together will always be the whole string)
Back-reference is denoted by \1, \2 etc. and refer back to captured items number 1,2 etc. It is used to match some string with a repeated substring. 
For example:
(.)\1   Matches any two characters repeated (except newline), like: ‘aa’, ‘&&’ etc.
Later versions of Perl (5 an up) we can denote back-reference with: \g{N}  N is the number of the group.








Summary
	Metacharacter
	
	Matches

	.

[ ]

[^ ]

\char
	Dot

Character class

Negated character

Escaped character
	Any character except for a newline (\n)

Any one character inside

Any one character not in

Matches the literal char

	Quantifiers for previous items

	?

*

+

{min,max}
	Question mark

Star

Plus sign

range
	One allowed, but optional

Any number allowed including none

At least one required, more optional

Min required, max allowed

	Items that match a position

	^

$

\<

\>
	Caret

Dollar sign

Back slash + less than
Back slash + more than
	Beginning of a line

End of a line

Position of word’s start

Position of word’s end

	Other

	|

( )

\1, \2, ….
	Or

Parenthesis

Back-reference
	Either expression it separates

Grouping, limit scope of alternation, captures back-references.
Text previously matched by 1st, 2nd etc. group

	
	
	



 
Python flavor
\s – whitespace, equivalent to [ \t\n\r\f\v]
\S – anything but a whitespace (like [^\s]
\d – any digit (like [0-9]
\D – anything but a digit (like [^0-9]
\b – whitespace around words (word boundary), backspace in character class
\B – whitespace, but only not around words
\w – Any alphanumeric character, including underscore (like [a-zA-Z0-9_]
\W – The complement of \w
{n} – like a range with fixed number

import re, or: from re import *
str=”………….”
result=re.findall(regex, str)
re functions (methods):
match – matches a regex to the beginning of a string
fullmatch - matches a regex to all of a string
search – Searches a string for presence of the regex
sub – substitute occurrences of a pattern (regex) found in a string
subn – The same as sub, but also returns a number of substitutions made
split – splits a string by a pattern
findall(pattern,string,flags=I) – returns a list of all matches
Using flags:  findall(pattern,string,flags=i)   # i means: case insensitive.

 



Th corstuecled s e  mhod ol o4 omor,
e e e S T o 40
e el s  Fod conmad ht i v ot o o
e Bt s e s s 2210 e
s e i o )

Ror resons, s v a5 o by many s e o
P A e s iy e o e s 9%
S s s o com o

sy mor aarces el Wi raad o 00 o o o ol
Er v i bt dows y ke T
e e a3 e s s

70 ST vt (13w 008 xplration o i i co)

g s 10 g wih s hrcis ot e s
s e s e e

e e Crr i sl e s 3 e To mck
ooy o 3. s (53 G 3 (ot ) So

et 10 v o o 0 e 10

L —T)
T el br i s o rson o, b exanc: <o i o st
e

R —————————
e vt e o o

* o) e eping o chrsce ko -] bk 0o

) e imiy bk i st rc o o, (avesin nk
e o Sk gRon Gy o S 5
S i o it e et st 2. e dantrs
e s b s (i) A

163408811524 209852 O it ary gl e n U, (0
eSS o S gl e oy st 930
rincesan, w3 e




